Application of Machine Learning Techniques for Railway Health Monitoring
نویسندگان
چکیده
Emerging wireless sensor networking (WSN) and modern machine learning techniques have encouraged interest in the development of vehicle health monitoring (VHM) systems that ensure secure and reliable operation of the rail vehicle. The performance of rail vehicles running on railway tracks is governed by the dynamic behaviours of railway bogies especially in the cases of lateral instability and track irregularities. In order to ensure safety and reliability of railway in this chapter, a forecasting model has been developed to investigate vertical acceleration behaviour of railway wagons attached to a moving locomotive using modern machine learning techniques. Initially, an energy-efficient data acquisition model has been proposed for WSN applications using popular learning algorithms. Later, a prediction model has been developed to investigate both front and rear body vertical acceleration behaviour. Different types of models can be built using a uniform platform to evaluate their performances and estimate different attributes’ correlation coefficient (CC), root mean square error (RMSE), mean absolute error (MAE), root relative squared error (RRSE), relative absolute error (RAE) and computation complexity for each of the algorithm. Finally, spectral analysis of front and rear body vertical condition is produced from the predicted data using Fast Fourier Transform (FFT) and used to generate precautionary signals and system status which can be used by the locomotive driver for deciding upon necessary actions. DOI: 10.4018/978-1-60566-908-3.ch016
منابع مشابه
Monitoring Vertical Acceleration of Railway Wagon using Machine Learning Technique
Wireless communications and modern machine learning techniques have jointly been applied in the recent development of vehicle health monitoring (VHM) systems. The performance of rail vehicles running on railway tracks is governed by the dynamic behaviors of railway bogies especially in the cases of lateral instability and track irregularities. In this study we have proposed a system to monitor ...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملForecasting Vertical Acceleration Railway Wagons - A comparative study
Advances in modern machine learning techniques has encouraged interest in the development of vehicle health monitoring (VHM) systems. These techniques are useful for the reduction of maintenance and inspection requirements of railway systems. The performance of rail vehicles running on a track is limited by the lateral instability and track irregularities of a railway wagon. In this study, a fo...
متن کاملMachine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...
متن کاملAssessment and Monitoring for Railway Tracks Reliability and Safety using Nondestructive Testing Measurement Systems
The deterioration of railway tracks raises great concerns about the integrity of assessments and evaluations of railway tracks currently in service. Integrated inspection strategies coupled with innovations in inspection technology can lead to significant improvements in operational cost efficiency and reliability without the requirement of a fundamental shift in the existing understanding o...
متن کامل